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STRUCTURE OF THE CONSTITUTIVE RELATIONS

FOR HEREDITARILY ELASTIC MATERIALS

REINFORCED BY HARD FIBERS

UDC 539.3R. A. Kayumov and I. G. Teregulov

The problem of simplifying the nonlinear hereditary elasticity relations is considered for strongly
anisotropic materials such as fiber-reinforced composites. This is done using their property that
the material stiffness is high along the reinforcement and is low in the cross-sectional direction.
The material is considered transversally isotropic. The simplification is performed by analyzing
asymptotic representations of creep relations. Relations of various degrees of accuracy for various
types of composites and stress states are obtained.
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There are two basic methods for determining the constitutive relations for composite materials (CMs). In
the first method, the mechanical properties of a CM can be determined experimentally on samples whose material is
considered homogeneous and anisotropic (the phenomenological approach). This method, however, requires a large
number of experiments since the material properties depend not only on the physicomechanical characteristics of the
composite phases but also on its structure and manufacturing techniques. In the structural approach, the mechanical
characteristics of a CM are determined from the well-known properties of the starting components. A disadvantage
of this method is that in compositions, materials often behave absolutely differently than in independent tests.
However, both the first and second approaches involve the problem of choosing a structure of the constitutive
relations that would lead to a reduction in the necessary volume of experimental information.

The nonlinear elasticity relations for CMs have been studied in a number of papers (see, for example,
[1–9]). In the present paper, we consider the problem of simplifying the structure of the nonlinear constitutive
relations for hereditarily elastic, transversally isotropic materials such as fiberglass, Plexiglas, and carbon fiber-
reinforced plastics. The simplification is performed using technique proposed for the case of nonlinear elasticity
proposed in [10–13] and for thin shells in the case of nonlinear viscoelasticity in [14]. However, for CMs in shells
of medium thickness and thick shells, the method described in [14], does not provide simple constitutive relations.
A modification of this approach is described below.

1. Fiber-reinforced materials can be considered orthotropic; therefore, we use a coordinate system attached
to the orthotropy axes with the Ox1 axis directed along the basic reinforcement by hard fibers and the Ox2 and
Ox3 axes directed across this direction. For convenience in writing and analyzing the constitutive relations, below
we use the following notation for the stress-tensor components (σ) and small strains (ε):

τ1 = σ11, τ2 = σ22, τ3 = σ33, τ4 = σ23, τ5 = σ13, τ6 = σ12,

e1 = ε11, e2 = ε22, e3 = ε33, e4 = 2ε23, e5 = 2ε13, e6 = 2ε12

(1.1)

(τ i and ei are the components of the vectors made up of the stress- and strain-tensor components).
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In the theory of hereditary elasticity, the relationship between the static and kinematic characteristics can
be written as

ei = Aij(S1, S2, . . . )τ j +

t∫
0

∂H

∂τ i
dθ, H = H(t− θ, S1, . . . ). (1.2)

Here H is the creep potential and Si are invariants obtained by convolution of the stress tensor with the tensors
describing the mechanical properties of the material.

To make the constitutive relations simple and convenient for use in seeking material functions and constants
from experimental data and in solving problems of designing structural members, it is necessary to analyze relations
(1.2) with the aim of reducing the dimension of the functions Aij and H. This can be done using the property of
strong anisotropy of fiber-reinforced composites.

Let us consider the loading of a sample by time-independent stresses τ i = τ i
0 = consti. We make the change

of variable θ1 = t − θ. After that, differentiating relations (1.2) with respect time t, we obtain (the dot above the
variable denotes the derivative with respect to t and the subscript c the creep strain):

ėi = ėc
i =

∂H(t, S1, S2, . . . )
∂τ i

∣∣∣
τ i=τ i

0

. (1.3)

Along with the stress state τ i
0, we consider the state τ i

0+dτ i. In this case, the rates ėc
i change by the quantity

dėc
i = Bik dτk, Bik =

∂2H

∂τ i ∂τk
. (1.4)

It is known that in a one-dimensional stress state, an increase in the stress leads to an increase in the creep
rate. Extending this to the spatial case, we write

dτ i dėc
i > 0. (1.5)

Condition (1.5) can be treated as the stability condition for the material.
The diagonal elements of the matrix ‖B‖ have a physical meaning and characterize the material viscosity for

simple strain states: B11 for extension or compression along the fibers, B22 and B33 for extension or compression
across the fibers, B44 for shear in the plane perpendicular to the reinforcement direction, etc.

To analyze the structure of the potential H, we use the property of fiber-reinforced materials that the creep
compliance in the reinforcement direction is lower than the shear compliance and the creep compliance across the
fibers. A similar assumption is made for the increments dėc

i and dτ i. This implies that

B11 � B22, B33, B44, B55, B66. (1.6)

However, the use of only relation (1.6) does not allow us to considerably reduce the number of arguments of the
function H. Therefore, we narrow the class of the examined CMs and determine the structure of the potential H

for reinforced materials in the form of a braid or a strip, which can be considered transversally isotropic in the cross
section perpendicular to the reinforcement.

2. For the examined material, the potential H and, hence, the Hesse matrix ‖B‖ should depend on the
invariants independent of the rotation about the axis Ox1 and mirror mappings in the plane x2x3. As such we can
choose the following [12, 13, 15, 16]:

S1 = τ1, S2 = τ2 + τ3, S3 = (τ5)2 + (τ6)2,

S4 = (τ2)2 + (τ3)2 + 2(τ4)2, S5 = 2τ4τ5τ6 + τ2(τ6)2 + τ3(τ5)2.
(2.1)

Thus, the function H has six arguments:

H = H(t, S1, S2, . . . , S5). (2.2)

Next, using assumptions (1.6), we introduce small parameters that characterize the ratios of the creep
compliances of the material for various simple loads:

η2 ≈ B11

B22
=

B11

B33
� 1, ξ2 ≈ B22

B44
< 1, γ2 ≈ B44

B55
=

B44

B66
< 1. (2.3)
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The case B66 = B55 < B44 does not differ in principle from that considered here. The calculations are similar to
those given below if instead of (1.1) we introduce the notation

e4 = 2e13, e5 = 2e12, e6 = 2e23, τ4 = σ13, τ5 = σ12, τ6 = σ23

(here and below, the subscript c is omitted).
Along with the notation introduced above, we use matrix and vector symbols, omitting subscripts and

denoting by τ and e the vectors with components (1.1) and by B the matrix ‖B‖.
Relations (1.4) can be written as

dτ = B−1 dė = D dė. (2.4)

An analysis of (2.4) assuming a low creep compliance along the reinforcement suggests that the diagonal elements
of the matrix D also have different orders, namely:

D22

D11
=

D33

D11
≈ η2 � 1,

D44

D22
≈ ξ2 < 1,

D55

D44
=

D66

D44
≈ γ2 < 1. (2.5)

From the material stability conditions (1.5) and assumptions (2.5), it follows that the elements of the symmetric
matrix D have different orders of smallness with respect to D11 and can be estimated by the relation

D ≈ D11

∣∣∣∣∣∣∣∣∣∣∣∣

1 ηm ηm ηpξq ηrξsγb ηzξtγh

. . . η2 η2 . . . . . . . . .

. . . . . . η2 . . . . . . . . .

. . . . . . . . . η2ξ2 . . . . . .

. . . . . . . . . . . . η2ξ2γ2 . . .

. . . . . . . . . . . . . . . η2ξ2γ2

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.6)

Here m, p, q, r, s, b, z, t, and h > 1.
From (2.6) it follows that dependences (2.4) can be replaced by approximate relations of various orders of

accuracy. Next we consider three versions of simplified relations. In the first relation, omitting quantities of order
O(ηm) compared to unity, we obtain

dτ1 ≈ D11 dė1 or dė1 = (D11)−1 dτ1 = C11(t, S1, S2, . . . , S5) dτ1. (2.7)

Since dė1 is the total differential, the strain rate ė1 should depend only on τ1. Taking into account the
expressions for the invariants (2.1), we infer that ė1 depends only on two arguments:

ė1 = ϕ1(t, S1) = ϕ1(t, τ1). (2.8)

As is evident from (2.8), one can easily obtain ϕ1(t, τ1) by analyzing experimental data on the simple extension of
CMs for various load levels and approximate it for any system of functions of time and stress τ1. In determining the
approximation coefficients, it is necessary to ensure that the stability conditions for the material (1.5) be satisfied.
This can be achieved by two methods: by choosing special basis functions or by using mathematical programming
methods with minimization of the residual of calculation and experimental strains subject to constraints (1.5).

The structure of the function ϕ1(t, τ1) can be specified, for example, as a generalization of the relations of the
known linear creep kernels. In particular, the creep of many materials, as noted in [17], is adequately described by
Abel’s kernel. Then, for the linear case of one-dimensional extension–compression problems, relation (2.8) becomes

ė1 = C(t− θ)β , −1 < β < 0, C > 0. (2.9)

For the nonlinear case, it can be assumed, for example, that ϕ1(t, τ1) has the same structure but the coefficients
are related to τ1, in particular, by the formulas

C = (C0 + C1τ
1 + C2(τ1)2 + . . . )2n; (2.10)

β = −1/(1 + (β0 + β1τ
1 + β2(τ1)2 + . . . )2m)p. (2.11)

This form of representation of C and β ensures that conditions (2.9) are satisfied. In order that conditions (1.5)
be satisfied, they need to be written in a certain working range of stresses τ1 and used as constraints in choosing
the sought coefficients by mathematical programming methods. In [18], this approach (with n = 1, m = 1, and
p = 0.5) was employed to describe nonlinear creep for multistage loading of Plexiglas cylindrical shells produced by
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winding of composite plaits. The other linear hereditary relations can be generalized similarly, assuming that the
parameters of the employed creep kernels are stress functions.

To determine the structure of the strain rates ė2 and ė3, in relations (2.4) for dτ2 and dτ3 we retain the first
three terms. In view of (2.6), we can write

dτ2 ≈ (D̃21ηm dė1 + D̃22η2 dė2 + D̃23η2 dė3)D11,

dτ3 ≈ (D̃31ηm dė1 + D̃32η2 dė2 + D̃33η2 dė3)D11.
(2.12)

Here D̃ij = Dij/D11, and it can be assumed that m > 2. Indeed, from a physical point of view, the change in
the stress dτ2 due to a change in the creep rate dė2 across the fibers should be greater than that due to the same
change in dė1 in the longitudinal direction. This is supported by the following calculations.

Let us solve Eqs. (2.7) and (2.12) for dė2 and dė3:

dė2 = dτ1B21(t, S1, S2, . . . , S5) + dτ2B22(t, S1, S2, . . . , S5) + dτ3B23(t, S1, S2, . . . , S5),

dė3 = dτ1B31(t, S1, S2, . . . , S5) + dτ2B32(t, S1, S2, . . . , S5) + dτ3B33(t, S1, S2, . . . , S5).
(2.13)

According to relations (1.3), the following condition should be satisfied:

∂ėi

∂τk
=

∂ėk

∂τi
. (2.14)

Because ė1 does not depend on τ2 and τ3, from (2.14) it follows that

B21 = 0, B31 = 0. (2.15)

Solving now system (2.13) for the stress increments, we find that they depend only on de2 and de3. Hence, in
expressions (2.12), the first terms should not be taken into account by virtue of the adopted assumptions. This
implies the smallness of the functions D̃21 and D̃31 or the smallness of the factors ηm. Since they appear as cofactors,
we assume that ηm � η2, i.e., m > 2.

An analysis of relations (2.13) also shows that according to (2.14) and taking into account the adopted
assumptions, the parameters ė2 and ė3 should not depend on τ4, τ5, and τ6. In turn, parameters ė4, ė5, and ė6

should depend on τ1, τ2, and τ3.
For the further concrete definition of the constitutive relations, we take into account that ėi are expressed

in terms of the potential H, which is a function of the invariants (2.1). Then, the expressions for ėi are written as

ė1 =
∂H

∂τ1
=

∂H

∂S1
; (2.16)

ė2 =
∂H

∂τ2
=

∂H

∂S2
+

∂H

∂S4
2τ2 +

∂H

∂S5
(τ6)2; (2.17)

ė3 =
∂H

∂τ3
=

∂H

∂S2
+

∂H

∂S4
2τ3 +

∂H

∂S5
(τ5)2; (2.18)

ė4 =
∂H

∂S4
4τ4 +

∂H

∂S5
2τ5τ6; (2.19)

ė5 =
∂H

∂S3
2τ5 +

∂H

∂S5
2(τ3τ5 + τ4τ6); (2.20)

ė6 =
∂H

∂S3
2τ6 +

∂H

∂S5
2(τ2τ6 + τ4τ5). (2.21)

Because parameters ė2 and ė3 do not depend on τ5 and τ6 and parameters ė5 and ė6 do not depend on τ2 and τ3,
from (2.16)–(2.21) it follows that ∂H/∂S5 = 0.

Next, we subtract (2.18) from (2.17):

ė2 − ė3 =
∂H

∂S4
2(τ2 − τ3). (2.22)
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Because ė2 and ė3 do not depend on τ4 and ė4 does not depend on τ2 and τ3, a comparison of (2.22) and (2.19)
shows that ∂H/∂S4 does not depend on τ i. We denote

∂H

∂S4
= H44(t). (2.23)

Then, from relations (2.14) it follows that ė5 and ė6 should depend not only on τ1, τ2, and τ3 but also on τ4. This
implies that ∂H/∂S3 does not depend on S1, S2, and S4. In view of the aforesaid, H can be written as

H = H1(t, τ1) + H2(t, S2) + H44(t)(τ4)2 + H3(t, S3). (2.24)

Thus, in the simplest case, the potential H for a transversally isotropic material contains three functions
of two arguments and one function of one argument instead of a function of six arguments. The functions H2,
H44, and H3 can be determined from simple experiments with extension–compression across the reinforcement and
shears in the planes (x1, x2) and (x2, x3). If such tests are technically difficult, these functions are determined by
solving some inverse problems of the mechanics of structures (using so-called identification methods).

The particular form of the functions H1, H2, and H3 can be chosen in a similar manner as was done for
the functions ϕ1 in formula (2.8), for example, by generalizing the linear Hereditary relations. In particular, if the
initial creep kernel is Abel’s kernel, they can be written as

H1 =
∫

(C10 + C11τ
1 + C12(τ1)2 + . . . )2n1t−1/(1+(β10+β11τ1+... )2m1 )p1

dτ1; (2.25)

H2 =
∫

(C20 + C21S2 + C22(S2)2 + . . . )2n2t−1/(1+(β20+β21S2+... )2m2 )p2
dS2; (2.26)

H3 =
∫

(C30 + C31S3 + C32(S3)2 + . . . )2n3t−1/(1+(β30+β31S3+... )2m3 )p3
dS3.

We recall that in determining Cij and βij , it is necessary to ensure that conditions (1.5) are satisfied in the
working range of stresses.

Next, we consider the second version of the nonlinear hereditary relations, which can be called refined
relations. Retaining the first three terms in relations (2.4) for dτ1, dτ2, and dτ3 and performing an analysis as was
done above, we write the potential H as

H = H1(t, τ1, S2) + H44(t)(τ4)2 + H3(t, S3). (2.27)

In this case, to determine H1, it is necessary to perform an experiment with a biaxial stress state for various load
levels.

Reducing the accuracy of the representation of the increments in the linear strain rate dėi in (2.4), we can
write H1 as the sum of functions of two rather than three arguments and obtain something intermediate between
the elementary representation of H in the form of (2.24) and the refined representation in the form of (2.27). For
this, we assume that in relations (2.4), the functions D12 and D13 are equal to certain averaged values, i.e., as in
linear heredity theory, they do not depend on S1 and S2. The reason for such simplification can be the fact that
D12, D13, and D23 are smaller than D11. Then, in view of the transversal isotropy properties we obtain

H1 = H11(t, τ1) + H12(t)τ1S2 + H22(t, S2). (2.28)

For identification from experiments, the functions H11 and H22 can be specified, for example, in the form of (2.25)
and (2.26), respectively.

Relations (2.24) and (2.27) have one disadvantage: an analysis of the constitutive relations shows that in
the plane of isotropy, the shear strain rate depends linearly on the shear stress with a certain degree of accuracy.
However, if the fibers are thin and hard and their volume fraction is not too large, the strain of the composite is
determined primarily by the properties of the matrix. Since, in most cases, the matrix can be considered isotropic,
in the case of extension–compression and shear in the plane of isotropy, as in the case of nonlinear elasticity, the
nonlinearity level will most likely be identical. Thus, we obtain constitutive relations that take into account this
fact, which will be called the third version of the simplified creep relations. For this, in expressions (2.4) we retain
only the first term for dτ1 and four rather than three terms for dτ2 and dτ3. Then, just as was done above, we
arrive at the expression

H = H1(t, τ1) + H24(t, S2, S4) + H3(t, S3). (2.29)
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Experimental determination of the function H24(t, S2, S4) is a complex problem. Its successful solution, on
the one hand, depends on the choice of the form of H24. On the other hand, the problem is complicated by the
fact that conditions (1.5) should be satisfied in the working range of the parameters S2, S3, and S4. Since it is now
necessary to write these conditions for various combinations of three variables, the number of restrictions in the
mathematical programming problem increases considerably. The solution of this problem can be facilitated as was
done in [19]; i.e., in determining the structure of the stiffness characteristics of a nonlinearly elastic, transversally
isotropic material in the plane of isotropy, it is possible to use the constitutive relations for an isotropic material
taking into account the smallness of the longitudinal (along the reinforcement) strains. Here we assume that in
the absence of stresses τ1, the hereditary relations in the plane of isotropy should be similar to the relations for an
isotropic material. Then, relations (2.29) can be written in simplified form

H = H1(t, τ1) + H0(t, σi),

where σi is the stress intensity for τ1 = 0. For our case, it has the form

σ2
i = (τ2)2 + (τ3)2 − (τ2τ3) + 3(τ4)2 + 3(τ5)2 + 3(τ6)2 = 0.5(3S4 − S2

2 + 6S3).

We can now write the function H0(t, σi) in a form similar to (2.25), i.e., set σi instead of the argument τ1. The
satisfaction of condition (1.5) is also strongly simplified since it is reduced to the condition ∂2H0/∂σi ∂σi > 0.

As in the previous case, relations (2.29) can be supplemented by one more function of a single variable that
corresponds to linear heredity and takes into account the effect of τ2 and τ3 on ė1. In this case, H becomes

H = H1(t, τ1) + H12(t)τ1S2 + H24(t, S2, S4) + H3(t, S3). (2.30)

As can be seen from (2.29) and (2.30), the effect of shear stresses on the linear strain rate in the plane of isotropy
is taken into account in this case.

The above relations can also be used to analyze shells of medium thickness using the hypothesis σ33 = τ3 = 0.
In this case, ė3 6= 0 but the contribution of this strain rate to the energy is equal to zero and there is no need to
know its dependence on stress.

Thus, accounting for the behavior of fibrous composites makes it possible to simplify and obtain consistent
forms of the nonlinear hereditary elasticity relations for fiber-reinforced materials. The errors of the proposed
simplified constitutive relations, for example, the assumptions of the nondependence of the linear strain rate on
the shear stress in the form of (2.8) and (2.24), can be estimated for particular materials only from experimental
studies of composites.
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